Program : Diploma in Electronics/ Electronics and Communication Engineering/ Biomedical Engineering		
Course Code : 3044	Course Title: Digital Electronics	
Semester :3	Credits: 4	
Course Category: Program Core		
Periods per week: 4 (L:3, T:1, P:0)	Periods per semester:60	

Course Objectives:

- To introduces the concept of realizing digital logic using Boolean algebra.
- To familiarize the implementation of combinational and sequential circuits.
- To assimilate the idea of application of flip flops to realize synchronous and asynchronous counters.
- To familiarize different types of memories, which are prominent members of logical families.

Course Prerequisites:

Topic	Course code	Course Title	Semester
Basic Engineering Mathematics Principles		Mathematics I & II	1 & 2
Fundamentals of Electric Circuits, Passive components		Fundamentals of Electrical &Electronics Engineering	2
Semiconductor theory, diodes, transistors		Basic Electronics	2

Course Outcomes:

On completion of the course, the student will be able to:

COn	Description	Duration (Hours)	Cognitive level
CO1	Minimize logic functions using Boolean algebra.	18	Applying
CO2	Develop combinational logic circuits	15	Applying
СОЗ	Illustrate the working of Flip Flops and Shift Registers.	14	Understanding
CO4	Design synchronous and asynchronous counters	11	Applying
	Series Test	2	

CO-PO Mapping:

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3						
CO2	3						
CO3	2						
CO4	3						

3-Strongly mapped, 2-Moderately mapped, 1-Weakly mapped

Course Outline:

Module Outcomes	Description	Duration (Hours)	Cognitive Level
CO1	Minimize logic functions using Boolean algebra.		
M1.01	Identify various number systems and perform conversion from one number system to another.	5	Understanding
M1.02	Outline various Binary Codes.Use binary arithmetic for addition and subtraction	4	Understanding
M1.03	Illustrate the universal property of NAND and NOR gates.	3	Understanding
M1.04	Apply K Map for simplification of Boolean expression.	6	Applying

Contents:

Number Systems & Boolean Algebra

Introduction to different Number Systems - Binary, Decimal, Hexadecimal - Conversion from one Number System to another, Binary codes - Binary Coded Decimal, Gray Code, ASCII code, Excess - 3 code, Binary addition, unsigned and signed numbers, 1's complement and 2's complement arithmetic.

Introduction to Logic gates, Universal property of NAND and NOR gates.

Boolean Algebra - Rules and laws of Boolean Algebra, De-Morgan's Theorem, SOP expression and POS expression, Karnaugh Map and its use for simplification of Boolean expressions up to 4 variables, pairs, quads, octets, don't care conditions

	·		
CO2	Develop combinational logic circuits		
M2.01	Explain the evolution of IC technology.	2	Understanding
M2.02	Define the features of logic families.	3	Understanding
M2.03	Compare and contrast different logic families.	2	Understanding
M2.04	Design various combinational logic circuits.	8	Applying
	Series Test - I	1	

Contents:

Logic families and combinational logiccircuits

IC technologies-SSI, MSI, LSI, VLSI and ULSI

Logic families - features- threshold voltage, propagation delay, power dissipation, fan-in and fan-out, voltage and current parameters, noise margin, speed power product. Comparison of TTL, ECL and CMOS logic families.

Combinational logic circuits -Half Adder, Half subtractor, Full Adder and Full subtractor (using any gates), Concept of Parallel adder – Ripple carry adder, Encoders-Decimal to BCD Encoder, Decoders- 3 line to 8 line decoder, Code converters – Binary to Gray and Gray to Binary, multiplexers - 2 x1 and 4x1 and de-multiplexers- 1 to 4.

CO3	Illustrate the working of Flip Flops and Shift Registers.		
M3.01	Compare and contrast combinational and sequential logic circuits	2	Understanding
M3.02	Explain Flip flops using gates.	7	Understanding
M3.03	Illustrate Shift Registers using Flip Flops.	3	Understanding
M3.04	Illustrate Counters using Shift register.	2	Understanding

Contents:

Sequential logic circuits: Distinguish Combinational and Sequential circuits.

Flip Flops – SR latch and flop flop using NAND gate- symbol and truth table, Edge triggering and Level triggering, JK flip flop – logic symbol and truth table, Asynchronous inputs- Preset and Clear, JK-Master slave flip flop –logic symbol and truth table, D and T flip flops from JKFF- logic symbol and truth table

Shift registers - Serial in Serial out, Parallel in Parallel out, Serial in Parallel out, Parallel in Serial out. Applications of Shift Registers - Ring counter, Johnson counter.

CO4	Design synchronous and asynchronous counters and memory devices		
M4.01	Compare and contrast Synchronous and Asynchronous Counters.	1	Understanding
M4.02	Design Asynchronous Counters using Flip Flops.	4	Applying
M4.03	Design Synchronous counters using flip flops.	4	Applying
M4.04	Classify Semiconductor Memories.	2	Understanding
	Series Test - II	1	

Contents:

Counters and Memory devices

Counters, modulus of a counter, Asynchronous Counters – 3 bit ripple counter (up counter and down counter), Mod 6 and mode 10 asynchronous counter using T flip flops,

Synchronous counter -design of 3 bit up counter and down counter.

Classification of Memories - RAM, DRAM, SRAM, SDRAM, DDRAM. ROM - PROM, EPROM, EEPROM, Flash memory and Cache memory.

Text /Reference:

T/R	BookTitle/Author
T1	Digital principles & Applications, Albert Paul Malvino & Donald P. Leach, McGraw Hill Education; Eighth edition, ISBN: 978-9339203405
R2	Digital Electronics, Roger L. TokheimMacmillian, McGraw-Hill Education (ISE Editions);International 2 Revised edition, ISBN: 978-0071167963 Macmillian
R3	Digital Electronics- An introduction to theory and practice, William H. Gothmann, Prentice Hall India Learning Private Limited; 2 edition ISBN: 978-8120303485
R4	Fundamentals of LogicDesign, Charles H. Roth Jr. Jaico Publishing House; First edition, ISBN: 978-8172247744
R5	Digital Electronics, R. Anand, Khanna Publications, New Delhi (Edition 2018) ISBN: 978-93-82609445

Online resources:

Sl.No	Website Link
1	https://en.wikibooks.org/wiki/Digital_Electronics
2	https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/
3	https://www.allaboutcircuits.com/textbook/digital/
4	https://www.researchgate.net/publication/264005171_Digital_Electronics