

Program : Diploma in Architecture/ Automobile Engineering / Civil Engineering & allied programs / Mechanical Engineering & allied programs / Wood & Paper Technology / Environmental Engineering	
Course Code : 2029	Course Title: Engineering Mechanics Lab
Semester : 2	Credits: No Credit
Course Category: Engineering Science	
Periods per week: 3 (L: 0 T: 0 P: 3)	Periods per semester: 45

Course Objectives:

- To provide hands-on experience for the students to outline the basic concept of engineering mechanics.
- To experiment with force system and make use of it to solve various engineering problems.

Course Prerequisites:

Topic	Course name	Semester
Knowledge of basic Mathematics	Mathematics I	1
Knowledge of basic Physics	Applied Physics I	1

Course Outcomes:

On completion of the course, the student will be able to:

COn	Description	Duration (Hours)	Cognitive Level
CO1	Identify the force systems for given conditions by applying the basics of mechanics.	15	Applying
C02	Determine unknown forces of different engineering systems.	6	Applying
C03	Infer centre of gravity and mass moment of inertia.	9	Applying
C04	Determine strains in mutually perpendicular directions under axial tension. Determine the co-efficient of friction on a plane through experimentation	11	Applying
	Lab Exam	4	

CO-PO Mapping

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1				3			
CO2				3			
CO3				3			
CO4				3			

3-Strongly mapped, 2-Moderately mapped, 1-Weakly mapped

Course Outline

Module outcomes	Description	Duration (Hours)	Cognitive Level
CO1	Identify the force systems for given conditions by applying the basics of mechanics.		
M1.01	Identify various apparatus related to Engineering Mechanics.	3	Understanding
M1.02	Determination resultant of concurrent force system applying by applying Law of Polygon using force table.	3	Applying
M1.03	Determination of resultant of concurrent force system graphically	3	Applying
M1.04	Determination of resultant of parallel force system graphically.	3	Applying
M1.05	Verify Lami's theorem by finding forces in various members of Jib crane.	3	Applying
CO2	Determine unknown forces of different engineering systems.		
M2.01	Determine support reactions for simply supported beam.	3	Applying
M2.02	Obtain support reactions of beam using graphical method by drawing link polygon.	3	Applying
	Lab Exam I	2	
CO3	Infer centre of gravity and moment of inertia		

M3.01	Determination of centroid of different laminae.	3	Applying
M3.02	Determination of mass moment of inertia of fly wheel and shaft.	3	Applying
M3.03	Verify the law of moments by using a bell crank lever	3	Applying
CO4	Determine strains in mutually perpendicular directions under axial tension. Determine the coefficient of friction on a plane through experimentation		
M4.01	Determination of strain under tensile loading.	3	Applying
M4.02	Determination of Coefficient of Friction between two surfaces on horizontal plane.	3	Applying
M4.03	Determination of Coefficient of Friction between two surfaces on inclined plane	3	Applying
	Open ended experiments	2	
	Lab Exam II	2	

Text / Reference:

T/R	Book Title/Author
T1	Khurmi, R.S., Applied Mechanics, S.Chand& Co. New Delhi.
T2	Bansal R K, A Text book of Engineering Mechanics, Laxmi Publications.
T3	Ramamrutham, Engineering Mechanics, S.,S Chand & Co. New Delhi.
T4	Bedi D.S. , Strength of Materials, Khanna Publishing House, Delhi, Ed. 2018
T5	Khurmi, R.S., Strength of Materials, S Chand and Co. Ltd. New Delhi.
T6	Ramamurtham, S, Strength of Materials, DhanpatRai and sons, New Delhi.
	Punmia B C, Strength of Materials, Laxmi Publications (p) Ltd. New Delhi.
R1	Ram, H. D.; Chauhan, A. K. Foundations and Applications of Applied Mechanics, Cambridge University Press.
R2	Meriam, J. L., Kraige, L.G. , Engineering Mechanics- Statics, Vol. I, Wiley Publication, New Delhi.
R3	Rattan S.S., Strength of Materials, McGraw Hill Education; New Delhi.
R4	Bansal R K, Strength of Materials, Laxmi Publications.
R5	Subramaniam R, Strength of Materials, Oxford University Press.

Online Resources:

Sl.No	Website Link
1	https://www.nptel.ac.in/courses/122104015/
2	https://nptel.ac.in/courses/112103109/
3	http://vlab.co.in/