COURSE INFORMATION SHEET

Program : Diploma in Engineering				
Course Code : 2002	Course Title : Engineering Mathematics II			
Semester : 2	Credits : 6			
Course Category : F				
Periods/Week : 6	Periods/Semester : 90			

Course Objectives:

Provide students an understanding of

- vectors , different types of vectors, operations on vectors and its applications.
- the concept of factorials, combinations, binomial expansions.
- about the evaluation of 2×2, 3×3 determinants and enable them to apply determinants for finding the solution of a system of linear equations in two or three unknowns.
- matrices, different types of matrices, operations on matrices, inverse matrix and how to find the solution of a system of linear equations in three unknowns by finding the inverse of the coefficient matrix.
- the concept of integration, different methods of integration and the evaluation of indefinite and definite integrals.
- how to apply integration for finding areas and volumes and also about the concept of differential equations and methods for finding its solutions.

Course Pre-requisites:

Topic/Description	Course code	Course name	Semester
Basic Mathematics			Entry level
Differentiation & Trigonometry	1002	Engineering Mathematics I	First Semester

Course Outcomes:

On completion of the course student will be able to:

CO No.	Description	Blooms Taxonomy level
1	Explain vectors, different types of vectors, operations on vectors, solve related problems and apply the results in vector algebra to find work done by a force and moment of a force.	I, II ,III ,IV

2	Explain the concepts of factorial, combinations, binomial expansions and solve related problems.	I, II ,III ,IV
3	Evaluate 2×2 and 3×3 determinants and apply determinants for finding the solution of a system of linear equations in two or three unknowns(Cramer's Rule)	I,II,III,V
4	Explain the concept of matrices, different types of matrices, operations on matrices, inverse matrix ,solve related problems and find the solution of a system of linear equations in three unknowns by finding the inverse of the coefficient matrix.	I,III,IV
5	Explain the concept of integration , different methods of integration and evaluate indefinite and definite integrals.	I,III ,IV
6	Apply integration for finding areas and volumes .Explain the concept of differential equations and methods for finding solutions of different types of differential equations and solve differential equations.	I,III,VI

I - Remember	II – Understand	III- Annly	IV – Analyze	V Evaluate	VI-Creating
I - Kemember	II - Ulluei stallu	пі- Арріу	IV - Allalyze	v-Evaluate	vicieating

<u>Syllabus:</u>

Module	Topics	Hours		
	VECTOR ALGEBRA			
I	Scalar and vector quantities, Definition of a vector, Representation of vectors, Name a directed line segment as a vector, Different types of vectors, Addition and subtraction of vectors in terms of the segment, Position vector of a point with reference to a point, Difference of two vectors with same initial point as position vector of a point, Orthogonal Cartesian axes, the unit vectors i, j and k, Product of two vectors-scalar (dot) product and vector (cross) product, Properties of dot product and cross product (no proof), Simple problems to find (i) work done by a force (application of scalar product) (ii) moment of a force (application of vector product).			
	Concept of factorial, Meaning of nCr and value of nCr (No proof and no problems), Use of nCr in the expansion $(x + a)^n$, where n is a positive integer, State binomial theorem for a positive integer, Expansion of $(x + a)^n$ and $(x - a)^n$, where n is positive integer(statement only), General term of the expansion of $(x + a)^n$, and $(x - a)^n$, Properties of binomial expansion, Problems of the following types (a) expand using Binomial theorem, (b) to find a particular term in the expansion, (c) to find middle term(s), (d) to find the coefficient of x^n (e) to find constant terms in $(x + a)^n$ and $(x - a)^n$.			

	DETERMINANTS					
	Definition of determinant by means of algebraic expression , Order of a determinant, Evaluation of determinants of 2nd & 3rd order -problems, Solution of a system of simultaneous linear equations in two unknowns, Solution of a system of simultaneous linear equations in three unknowns					
	MATRICES					
II	Definition of matrices, Order of matrices, Different types of matrices, Algebra of matrices such as Equality of matrices, Addition of matrices, Subtraction of matrices, Scalar multiplication and Multiplication, Problems on algebra of matrices, Transpose of a matrix, Symmetric and skew-symmetric matrices, Determinant associated with a square matrix, Singular and non singular matrices, Minors and cofactors, Cofactor matrix, Adjoint of a matrix, Inverse of a matrix, Solution of a system of three linear equations in three unknowns using the inverse of the coefficient matrix.					
	INTEGRAL CALCULUS					
	Indefinite Integrals					
	Integration as reverse process of differentiation, List standard integrals, Rules of integration					
	(i) $\int (k f(x) dx = k \int f(x) dx$					
	(ii) $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$					
III	Simple problems using standard results and rules of integration, Simple problems using algebraic simplification and trigonometric results, Integration by substitution method, Solve simple problems on substitution method, Evaluation of integrals of the form,					
	1) $\int x^{n-1} f(x^n) dx$ 2) $\int (f(x)) f^1(x) dx$ 3) $\int (f(x))^n f^1(x) dx$					
	4) $\int \frac{f1(x)}{f(x)} dx$ 5) $\int f(ax+b) dx$					
	Integration by parts : Solutions of problems of the type xsinx, $x^2 cosx$, (ax + b) e^x , x sin2x, log x, $e^x sinx$, x log x etc.					
	Definite Integrals : Meaning of $\int_{a}^{b} f(x) dx$ and definition of definite					
	integral(Correct notation), Properties of definite integrals, Problems of the same type as in indefinite integral using limits of integration.					

IV	APPLICATIONS OF INTEGRATION Area and Volume Formulae for finding area bounded by a curve and volume of a solid of revolution (no proof), estimation of the area bounded by the curve $y = f(x)$, the x- axis and the ordinates at x=a and x=b, Estimation of the area bounded by the curve $y = f(x)$, and the x- axis, Estimation of the area enclosed between two curves $y_1 = f_1(x)$, and $y_2=f_2(x)$, Simple problems to find the volume of solid of revolution. Differential Equations Definition of differential equation with examples, Order and Degree of D E with examples, Solution of DE by variable separable method, Problems on variable separable method, Solution of a linear DE of the type $\frac{dy}{dx} + Fy = Q$, Simple problems, Solution of D E of the type $\frac{d^2y}{dx^2} = f(x)$, Simple problems.	16
	Tutorials, Tests, Assignments	10
	Total Hours	90

Text / Reference:

T/R	Book Title/Author
T1	Engineering Mathematics-II for Polytechnic Colleges by different authors
R1	Applied Mathematics– Dr. D. S. Prakash - S Chand Publications
R2	Applied Mathematics –W.R. Neelakanta –Sapna Publications.
R3	Calculus: One-variable Calculus (Vol I)-2nd Edition- Tom M Apostol – Wiley
R4	Higher Engineering Mathematics – B. S. Grewal., Khana publishers, 38th Edition
R5	Engineering Mathematics –Bali & Iyenger

Web Source Reference:

Sl No	Website Link
1	https://www.nptelonlinecourse.nic.in
2	https://www.khanacademy.org>math
3	https://www.britanica.com
4	https://en.m.wikipedia.org>wiki>differ

5	https://www.classroom.com>gk>pps>U

Course Outcome No.	Description	Topic from syllabus	Student Learning Outcomes No.	Description	Suggested Learning Activities	Duration (Hours)	Blooms Taxonomy Level
CO ₁	Explain	Scalars &	SLO1	Define scalars with examples	Explanation with	4 hrs	1
	vectors,	Vectors	SLO2	Define vectors with examples	use of chalk and		1
	different	nt of	SLO3	Represent vectors as a directed line segment	board		П
	types of vectors,		SLO4	Define magnitude of vectors and its notations	Interactive lecture		1
			SLO5	Define unit vectors			1
	operations on		SLO6	Define zero vectors			1
	related		SLO7	Define negative vectors.			1
	problems and		SLO8	Define co-initial vectors.			Ι
	apply the		SLO9	Define collinear vectors.			1
	results in		SLO10	Define like and unlike vectors			1
	vector		SLO11	Define position vector of a point			1
	algebra to find work done by a force and moment of a force.	gebra to nd work one by a orce and oment of a orce.	SLO12	Represent vector in terms of position vectors			П
			SLO13	State triangle law of vector addition			1
			SLO14	State parallelogram law of vector addition			1
			SLO15	Define unit vectors i, j, k along X-axis, Y-axis, Z-axis			1
				respectively			
			SLO16	Represent vectors in terms of its components			П
			SLO17	Define magnitude of a vector given in terms of its			1
				components			
		Operations of	SLO18	Represent addition of vectors in terms of segment	Explanation with	4 hrs	П
		vectors	SLO19	Represent subtraction of vectors in terms of segment	use of chalk and		П
			SLO20	Find the distance between two points if position	board		1
				vectors are given	Interactive lecture		
			SLO21	Find the distance between origin and a point if	Practice exercise		1
				position vectors are given			
			SLO22	Define scalar multiplication of vectors			1
			SLO23	List properties of scalar multiplication			IV
			SLO24	Solve problems related to operations on vector			Ш
				algebra			
			SLO25	Define scalar product(dot product)			1

		SLO26	Define vector product(cross product)			1
		SLO27	Define Scalar product in terms of components			1
		SLO28	Find scalar product of two vectors			1
		SLO29	Define vector product in terms of components			1
		SLO30	Find vector product of two vectors	-		1
		SLO31	Find unit vector along a given vector			1
	Properties of	SLO32	Define projection of a vector on another vector	Explanation with	4 hrs	1
	scalar product and vector	SLO33	Find projection of a vector on another vector	use of chalk and board		I
	products	SLO34	State the condition for two vectors to be	Interactive lecture		1
			perpendicular	Practice exercise		
		SLO35	Apply the condition that scalar product is zero for two perpendicular vectors	Group discussion		111
		51.026	State the formula to find the angle between two	-		
		31030	vectors			1
		\$1.037	Apply formula to find the angles between two vectors	-		111
		52037	using scalar product			
		SLO38	State the condition for two vectors to be parallel			1
		SLO39	Apply condition for two vectors to be parallel or	-		111
			collinear			
		SLO40	Solve problems in connection with scalar product			III
		SLO41	Define unit vector in the direction of two vectors			1
		SLO42	Find unit vector in the direction of two vectors			1
		SLO43	State the condition for two vectors to be collinear in	-		1
			vector product			
		SLO44	Apply the condition for three points to be collinear			III
		SLO45	State the formula for finding the area of a			1
			parallelogram			
		SLO46	Find area of a parallelogram in terms of vector			1
			product	-		
		SLO47	State the formula for finding the area of a triangle	-		1
		SLO48	Find area of a triangle in terms of vector product			1

		Applications of	SLO49	State the formula for finding work done by a force	Explanation with	2 hrs	1
		scalar product	SI 050	Apply scalar product for finding work done by a force	use of chalk and		
		and vector	01000		board		
		product	SLO51	State the formula for finding moment of a force	Interactive lecture		1
			SLO52	Apply vector product to find the moment of a force	Practice exercise		111
CO ₂	Explain the	Combinations	SLO53	Define factorial of a positive integer find factorial of a	Explanation with	1.5 hrs	1
	concepts of			positive integer	use of chalk and		
	factorial,		SLO54	Find factorial of a positive integer	board		1
	combinations			Explain concept of combinations	Interactive lecture		П
	, binomial		SLO55		Practice exercise		
	expansions		SLO56	Identify different notations for combinations			Ш
	and solve		SLO57	State formula for nCr			1
	related		SLO58	Find the value of nCr			1
	problems		SLO59	List properties of nCr			IV
		Binomial	SLO60	Explain how to apply nC_r in the expansion of $(x+a)^n$	Explanation with	8.5 hrs	11
		Expansion			use of chalk and		
			SLO61	State binomial theorem for (x+a) ⁿ	board		1
			SLO62	State properties of (x+a) ⁿ	Interactive lecture		1
					Practice exercise		
			SLO63	State binomial theorem for (x-a) ⁿ			1
			SLO64	Find the expansion of binomials of the form (x+a) ⁿ			1
			SLO65	Find the expansion of binomials of the form(x-a) ⁿ			1
			SLO66	Find a particular term in the expansion of (x+a) ⁿ			1
			SLO67	Find a particular term in the expansion of (x-a) ⁿ			1
			SLO68	Find the middle term(s) of a binomial expansion			1
			SLO69	Find the coefficient of x ⁿ in a binomial expansion			1
			SLO70	Find the constant term or term independent of x in a			1
				binomial expansion			
CO ₃	Evaluate 2×2	Determinants	SLO71	Define determinants and its notations	Explanation with	4 hrs	1
	and 3×3				use of chalk and		
	determinants		SLO72	Define order of a determinant	board		1
	and apply		SLO73	Evaluate 2×2 determinants	Interactive lecture		V
	determinants		SLO74	Solve for x if the value of a 2×2 determinant is given	Practice exercise		
	the solution		SLO75	Evaluate of 3×3 determinants			V
	of a system of		SLO76	Solve for x if the value of a 3×3 determinant is given			Ш
	of a system of						1

	linear	Solution of	SLO77	Explain Cramer's Rule	Explanation with	4 hrs	П				
	equations in	linear	SLO78	Solve two linear equations in two unknowns using	use of chalk and						
	two or three	equations		determinants	board						
	unknowns			(Cramer's Rule)	Interactive lecture						
	(Cramer's		SLO79	Solve three linear equations in three unknowns using	Practice exercise		Ξ				
	Rule)			determinants							
				(Cramer's Rule)							
CO ₄	Explain the	Matrices	SLO80	Define Matrix, elements of Matrix, notation and	Explanation with	2 hrs	1				
	concept of			representation	use of chalk and						
	matrices,		SLO81	Define order of a matrix using examples	board		1				
	different				Interactive lecture						
	types of			Represent generally a n x n matrix	Practice exercise		1				
	matrices,		SLO82								
	operations on										
	inverse		SLO83	Define square matrices, principal diagonal, diagonal			1				
	matrix solve			elements with examples							
	rolatod	ted olems and the tion of a em of	SLO84	Define upper and lower triangular matrices with			I				
	problems and			examples							
	find the			SLO85	Define diagonal matrix with examples			1			
	solution of a						SLO86	Define scalar matrix , with examples			1
	system of				SLO87	Define unit matrix with examples and its notations			1		
	linear		SLO88	Define row matrices with examples			1				
	equations in	ions in wns by	SLO89 Define column matrices with examples			1					
	three		SLO90	Define equal matrices with examples			1				
	unknowns by			SLO91	Solve for the values of the variables if two matrices are			III			
	finding the			equal							
	inverse of the coefficient matrix.	Operations on	SLO92	Define addition of matrices	Explanation with	3.5 hrs	I				
		matrices	SLO93	List properties of matrix addition	use of chalk and		IV				
			SLO94	Define subtraction of matrices	board		1				
			SLO95	Solve problems related to addition and subtraction of	Interactive lecture						
				matrices	Practice exercise						
			SLO96	Define scalar multiplication			1				
			SLO97	List properties of scalar multiplication			IV				
			SLO98	Solve problems related to scalar multiplication							
			SLO99	Define multiplication of matrices and its properties	1		1				

			SLO100	List properties of matrix multiplication			IV
			SLO101	Solve problems related to matrix multiplication			111
		Transpose of a	SLO102	Define transpose of a matrix and notations used	Explanation with	2 hrs	1
		matrix	SLO103	List properties of transposes	use of chalk and		IV
			SLO104	Define symmetric matrix with examples	board		1
			SLO105	Define skew- symmetric matrix with examples	Interactive lecture		1
			SLO106	Solve problems related to transpose of a matrix	Practice exercise		
			SLO107	Define determinant associate with a square matrix			1
			SLO108	Define singular and non -singular matrix with examples			I
		Adjoint and	SLO109	Define minors of elements of a matrix	Explanation with	5 hrs	1
		inverse of a	SLO110	Define cofactors and cofactor matrix	use of chalk and		I
		matrix	SLO111	Find minors of a matrix	board		1
			SLO112	Find co-factors & co-factor matrix	Interactive lecture		1
			SLO113	Define adjoint of a matrix	Practice exercise		1
			SLO114	Find adjoint of a matrix	Group discussion		I
			SLO115	Define inverse of a matrix and its formula			1
			SLO116	Apply formula to find the inverse of a matrix			
		Solution of	SLO117	Explain the method for solving a system of three linear	Explanation with	1.5 hrs	1
		linear		equations in three variables using inverse of matrix	use of chalk and		
		equations	SLO118	Solve three linear equations in three variables using	board		III
				inverse of matrix	Group discussion		
					Practice exercise		
CO ₅		Indefinite		Explain integration as the reverse process of	Explanation with	10 hrs	1
	Explain the	Integral	SLO119	differentiation	use of chalk and		
	concept of				board		
	integration,		SLO120	List standard integrals	Interactive lecture		IV
	different		SLO121	State Rules of Integration	Practice exercise		1
	methods of		SLO122	Apply standard integrals and rules in problems	Group discussion		111
	integration		SLO123	Apply trigonometric results to evaluate integrals			III
	and evaluate		SLO124	Find integrals using algebraic simplification			1
	indefinite and		SLO125	Find integrals by substitution method			1
	uefinite		SLO126	Find integrals of the form $\int x^{-1} f(x') dx$			1
	integrais.		SLO127	Find integrals of the form			1
				∫ (f(x))f⁺(x)dx			

			SLO128	Find integrals of the form ∫(f(x)) ⁿ f ¹ (x)dx			1
			SLO129	Find integrals of the form $\int \frac{f^{1}(x)}{f(x)} dx$			1
			SLO130	Find integrals of the form ∫f(ax+b) dx			I
			SLO131	State Integration by parts			1
			SLO132	Apply Integration by parts to find integrals of product of two functions			Ш
		Defiinite	SLO133	Explain meaning of definite integral	Explanation with	8 hrs	1
		Integral	SLO134	Define Definite integral	use of chalk and		1
			SLO135	List properties of definite integrals	board		IV
			SLO136	Apply limits of integration to problems solved in indefinite integral	Interactive lecture Practice exercise		111
CO ₆	Apply	Areas and	SLO137	State the formula to find the area bounded by a curve	Explanation with	6 hrs	1
0	integration	Volumes	SLO138	Estimate the area bounded by $y = f(x)$, the x-axis and	use of chalk and		VI
	for finding			ordinates x=a and x=b	board		
	areas and		SLO139	Estimate the area bounded by the curve $y = f(x) \& x$ -	Interactive lecture		VI
	volumes			axis	Practice exercise		
	.Explain the		SLO140	Estimate the area enclosed between two curves	Group discussion		VI
	concept of			$y_1 = f_1(x), y_2 = f_2(x)$			
	equations		SLO141	State the formula to find the volume of solid of			1
	and methods			revolution			
	for finding		SLO142	Apply formula to find the volume of solid of			Ш
	solutions of			revolution			
	different	Differential	SLO143	Define Differential Equations using examples	Explanation with	10 hrs	1
	types of	Equations	SLO144	Define order & degree of DE	use of chalk and		1
	differential		SLO145	State variable separable method	board		1
e a	equations and solve		SLO146	Solve differential equation by variable separable method	Interactive lecture Practice exercise		111
	differential equations		SLO147	State method for solving linear DE of the type $\frac{dy}{dx}$ +Py =Q	Group discussion		1
			SLO148	Solve linear D.E.of type $\frac{dy}{dx}$ +Py =Q			
			SLO149	State method for solving D.E. of the type $\frac{d^2y}{dx^2} = f(x)$			1
			SLO150	Solve D.E. of the type $\frac{d^2y}{dx^2} = f(x)$			III

Mapping of CO to PO

	PO ₁	PO ₂	PO ₃	PO ₄	PO₅	PO ₆	PO ₇	PO ₈	PO9	PO ₁₀
CO1	3	3						2		
CO2	3	3						2		
CO3	3	3						2		
CO4	3	3						2		
CO5	3	3						2		
CO6	3	3						2		

3-Strongly map 2-Moderately mapped 1-Weakly mapped

Justification for CO-PO mapping

со	Mapped	Justification
	POs	
	PO ₁	Vector algebra is part of basic mathematics and students get knowledge about different types of vectors,
CO1		product of vectors, its properties, its applications which has a major role in solving engineering problems.
	PO ₂	Vector Algebra has great importance in all engineering subjects and students acquire the ability to apply the

		results in vector algebra in solving core or applied engineering problems.
	PO ₈	Problems related to vectors and its applications can be discussed in group also and students perform effectively as an individual, and as a member or leader in group discussions and solving problems.
	PO ₁	Binomial expansion is one of the major topics in mathematics which is needed in different engineering subjects.
CO ₂	PO ₂	Binomial expansion is needed in many areas of engineering and students acquire the ability to apply binomial expansion in solving engineering problems.
	PO ₈	Students perform effectively as an individual, and as a member or leader in group discussions and solving different types of problems related to binomial expansions.
	PO1	Evaluation of determinants and its application in solving linear equations in two or three variables are used in solving engineering problems.
CO3	PO ₂	Students acquire the ability to apply determinants and its applications in solving problems that may arise in various engineering fields.
	PO ₈	Determinants and related problems can be discussed in group so that students get more interested in the topic and hence they will perform effectively as an individual, and as a member or leader in group discussions and solving problems.
	PO1	Matrix is part of basic mathematics and students acquire the knowledge of different types of matrices, operations in matrices and its application in solving equations which has important role in solving engineering problems.
CO ₄	PO ₂	Matrices have great importance in various engineering fields and students will acquire the ability to apply results in matrices for solving engineering problems.
	PO ₈	Matrices and the related topics can be very interestingly discussed in group in classroom and students will perform effectively as an individual, and as a member or leader in group discussions and solving problems.

CO ₅	PO1	Integration is applicable in different engineering subjects and different methods of integration are very much important in solving engineering problems. Students will be able to find the indefinite integrals and definite integrals of any type of functions.
	PO ₂	Students acquire the ability to apply results in integration for solving core or applied engineering problems.
	PO ₈	Students perform effectively as an individual, and as a member or leader in group discussions and solving problems.
CO ₆	PO1	Applications of integration is very much important in almost all engineering branches and students will be able to apply it in solving engineering problems. Differential equations and different methods for finding its solutions are also applicable in various engineering subjects.
	PO ₂	Students acquire the ability to apply different methods of finding areas and volumes and finding solutions of differential equations in solving core or applied engineering problems.
	PO ₈	Students perform effectively as an individual, and as a member or leader in group discussions and solving problems.

Gaps in the Syllabus – To meet industry/profession requirements:

Sl.No.	Description	Proposed Action	Mapped POs/PSOs	Justification
1				

Contents beyond syllabus/Advanced Topics/Design:

SI.No.	Description	Proposed Action	Mapped POs/PSOs	Justification
1				

Suggested Instructional/Learning Activities

- 1. Chalk & Talk
- 2. Active Lecturing
- 3. Group Discussion

Suggested Assessment Methodologies - Direct:

- 1. Attendance
- 2. Internal Series test
- 3. Assignments
- 4. Model Exam
- 5. End semester exam

Suggested Assessment Methodologies – In Direct:

- 1. Course End Survey
- 2. <u>Student Feedback on Faculty</u>